УДК 620.9(075) ББК 31.15я7 М92

Печатается по решению редакционно-издательского совета Казанского национального исследовательского технологического университета

> Рецензенты: д-р. техн. наук, проф. Т. Р. Билалов канд. хим. наук Т. Н. Куликова

Мухамадиев А. А.

М92 Источники энергии и устройства генерации теплоты : учебное пособие / А. А. Мухамадиев, С. В. Мазанов; Минобрнауки России, Казан. нац. исслед. технол. ун-т. – Казань : Изд-во КНИТУ, 2022. – 156 с.

ISBN 978-5-7882-3156-3

Рассмотрены теоретические и физико-химические основы теории горения топлив и устройства генерации теплоты. Приведены расчеты горелочных устройств, топливных форсунок, а также способы преобразования электрической энергии в теплоту.

Предназначено для бакалавров направления подготовки 13.03.01 «Теплоэнергетика и теплотехника», изучающих дисциплину «Источники энергии теплотехнологий», а также направлений, ведущих подготовку в области традиционных и альтернативных источников энергии.

Подготовлено на кафедре теоретических основ теплотехники.

УДК 620.9(075) ББК 31.15я7

ISBN 978-5-7882-3156-3

- © Мухамадиев А. А., Мазанов С. В., 2022
- © Казанский национальный исследовательский технологический университет, 2022

2

Оглавление

Введение	5
Глава 1. ОСНОВЫ ТЕОРИИ ГОРЕНИЯ	
1.1. Физические и химические теплотехнологические процессы	7
1.2. Проблемы энергетики теплотехнологии	9
1.3. Классификация источников энергии теплотехнологии	
1.4. Эффективность источников энергии. Критерии сравнительной оценки	
источников энергии теплотехнологии	12
1.5. Общие сведения об органическом топливе и его классификация	.14
1.6. Основные теплотехнические характеристики органического топлива.	
Состав топлива	16
1.7. Влияние состава на качество топлива	21
1.8. Зола топлива и характеристики плавления золы	23
1.9. Влага топлива	24
1.10. Летучие вещества и кокс твердого топлива	25
1.11. Теплота сгорания топлива	27
1.12. Теплота сгорания смеси топлив	31
1.13. Условное топливо. Приведенные характеристики топлива	32
1.14. Плотность топлива	33
1.15. Теплоемкость топлива	35
1.16. Основные показатели процесса полного горения	36
1.16.1. Теоретический расход топлива и технологический кислород	37
1.16.2. Продукты сгорания топлива. Теоретический выход продуктов	
сгорания	.42
1.16.3. Действительный выход продуктов сгорания	.44
1.16.4. Энтальпия продуктов сгорания. H-t-диаграмма продуктов	
сгорания	
1.16.5. Температура горения	
1.17. Основное уравнение горения	
1.18. Коэффициент избытка воздуха. Азотная и кислородная формула	
Глава 2. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ГОРЕНИЯ ТОПЛИВА.	
2.1. Кинетика химических реакций горения	
2.2. Химическое равновесие реакций горения. Закон действующих масс	.60
2.3. Зависимость равновесий химических реакций горения от температуры.	
Подвижность равновесия химических реакций. Принцип Ле-Шателье	
2.4. Скорость химических реакций	.64
2.5. Зависимость скорости химической реакции от температуры. Закон	
Аррениуса. Энергия активации	65

2.6. Влияние давления на скорость химической реакции при постоянной	
гемпературе	67
2.7. Зависимость скорости химической реакции от состава газовой смеси	
при постоянных давлении и температуре	
2.8. Физические основы теории горения топлива	
2.9. Самовоспламенение и зажигание горючей смеси	
2.10. Нижний и верхний концентрационные пределы воспламенения	76
Глава 3. ТЕХНИКА ГЕНЕРАЦИИ ТЕПЛОТЫ В ТЕПЛОТЕХНИЧЕСКИХ	
YCTAHOBKAX	
3.1. Газовые горелки и основные требования, предъявляемые к ним	
3.2. Основные типы газовых горелок теплотехнических установок	
3.2.1. Горелки с полным предварительным смешением	
3.2.2. Диффузионные горелки	87
3.2.3. Горелки с неполным предварительным смешением	89
3.2.4. Высокоскоростные горелки	90
3.2.5. Горелки с регулируемой длиной и светимостью факела	91
3.3. Основы расчета газовых горелок	92
3.3.1. Расчет инжекционных горелок	94
3.3.2. Расчет дутьевых горелок	
3.4. Форсунки для сжигания жидкого топлива	
 3.5. Основы расчета топливных форсунок 	
3.5.1. Расчет механических центробежных форсунок	
3.5.2. Расчет пневматических и паровых форсунок	
3.6. Способы преобразования электрической энергии в теплоту	
3.6.1. Способы прямого и дугового нагрева	
3.6.2. Способы плазменного нагрева	
3.6.3. Способы обработки электронным лучом	
3.6.4. Способы индукционного нагрева	
3.7. Основы расчета теплотехнологических реакторов, использующих	1 11
преобразованную в теплоту электрическую энергию	147
3.8. Выбор источника энергии для теплотехнологического процесса	
Литература	

Ä Ä