УДК 629.78.064.52 ББК 39.65 О-58

> Издание доступно в электронном виде по адресу https://bmstu.press/catalog/item/7107/

Факультет «Энергомашиностроение» Кафедра «Плазменные энергетические установки»

Рекомендовано Научно-методическим советом МГТУ им. Н.Э. Баумана в качестве учебного пособия

Онуфриева, Е. В.

О-58 Физические основы построения и проектирования высокотемпературных систем преобразования тока космических энергодвигательных установок: учебное пособие / Е. В. Онуфриева, В. В. Онуфриев, А. Б. Ивашкин. — Москва: Издательство МГТУ им. Н. Э. Баумана, 2021. — 167, [1] с.: ил. ISBN 978-5-7038-5542-3

Описаны особенности рабочих процессов и функционирования высокотемпературных систем преобразования тока в энергодвигательных установках космических аппаратов, а также методы определения их основных характеристик. Рассмотрены принципы системного подхода к проектированию элементов высокотемпературных систем преобразования тока, изложены методики проектирования и экспериментального исследования их характеристик. Представлены подходы к решению оптимизационных задач создания бортовой энергоустановки, методология применения основных конструктивных принципов при разработке компоновочных схем энергоустановок с различными источниками энергии. Сформулированы требования к системам преобразования тока на базе высокотемпературных плазменных вентилей с цезиевым и бариевым наполнением и высокотемпературной бортовой кабельной сети.

Для студентов, обучающихся по направлению подготовки 24.05.02 «Проектирование авиационных и ракетных двигателей» (специализация 24.05.02_05 «Проектирование электроракетных двигателей»). Может быть полезно для аспирантов, которые занимаются проблемами бортовой энергетики космических аппаратов.

УДК 629.78.064.52 ББК 39.65

Уважаемые читатели! Пожелания, предложения, а также сообщения о замеченных опечатках и неточностях Издательство просит направлять по электронной почте: info@baumanpress.ru

© МГТУ им. Н.Э. Баумана, 2021

© Оформление. Издательство МГТУ им. Н.Э. Баумана, 2021

Оглавление

Предисловие	3
Список основных обозначений	5
Список сокращений	7
Введение	8
Глава 1. Перспективные энергодвигательные установки для космической	
транспортировки	10
1.1. Состав, назначение, особенности функционирования	
энергодвигательной установки	10
1.2. Обзор космических энергодвигательных установок	
и энергетических установок	
1.3. Обзор мощных электроракетных двигателей	21
Контрольные вопросы	25
Литература	25
Глава 2. Системы преобразования тока космических энергодвигательных	
установок	27
2.1. Полупроводниковые системы преобразования тока космических	
энергодвигательных установок	27
2.2. Высокотемпературные вентили для систем преобразования	
тока	29
2.3. Теплофизические и электрофизические характеристики	
термоэмиссионных вентилей с цезиевым и бариевым	
наполнением	30
2.4. Пробойные напряжения высокотемпературных вентилей	34
2.5. Применение высокотемпературной системы преобразования	
тока в космических энергодвигательных установках	37
Контрольные вопросы	37
Литература	38
Глава 3. Энергомассовые и теплоэнергетические характеристики	
высокотемпературных систем преобразования тока	39
3.1. Особенности построения систем преобразования тока	
космических аппаратов с ядерной энергетической установкой	39
3.2. Особенности функционирования систем преобразования тока	
мощных энергодвигательных установок космических аппаратов	41
3.3. Основы проектирования высокотемпературного преобразователя	
тока и расчет его параметров	48
- *	

3.4. Учет влияния рабочей температуры вентилей на электрические	
и энергомассовые характеристики преобразователя тока	51
3.5. Основы расчета энергетических характеристик высоко-	
температурных высоковольтных термоэмиссионных вентилей	
и массоэнергетических параметров преобразователя тока	57
3.6. Расчет оптимального температурного режима преобразователя	
тока и его рабочего напряжения	. 65
3.7. Проектное обоснование энергомассовых и энергофизических	
характеристик плазменного преобразователя тока	. 67
Контрольные вопросы	69
Литература	
Глава 4. Проектирование шин бортовой кабельной сети космической	
энергодвигательной установки	71
4.1. Расчет оптимальной температуры бортовой кабельной сети	
4.2. Учет влияния тепло- и электрофизических характеристик	. /1
материала шин на удельную массу бортовой кабельной сети	75
	. 73
4.3. Учет влияния начальной температуры шин на оптимальные	70
параметры системы передачи электрической энергии	. 78
4.4. Проектный расчет геометрических характеристик шин высоко-	70
температурной бортовой кабельной сети	
4.5. Учет влияния частоты питающего напряжения на энергомассовы	
характеристики бортовой кабельной сети	
4.6. Учет количества промежуточных агрегатов при расчете удельной	
массы бортовой кабельной сети	. 85
4.7. Расчет энергомассовых характеристик высокотемпературной	
энергодвигательной установки	
Контрольные вопросы	
Литература	89
Глава 5. Расчет характеристик высоковольтного плазменного	
термоэмиссионного диода	. 90
5.1. Обобщенная вольт-амперная характеристика высоковольтного	
плазменного термоэмиссионного диода в режимах прямого	
и обратного токов	. 90
5.2. Вентильные свойства контакта электрод — плазма	
5.3. Расчет условия обеспечения непроводящего состояния	. , .
межэлектродного зазора	. 95
5.4. Ионный слой как $p-n$ -переход для выпрямления тока	
5.5. Расчетная модель ионного слоя в режиме обратного тока	
5.6. Аналитическое решение модели ионного слоя для расчета	. 105
напряжения зажигания обратного дугового разряда	108
5.7. Расчет напряжения зажигания обратного самостоятельного	. 100
дугового разряда в межэлектродном зазоре	115
Контрольные вопросы	
Литература	

167

Ä

Оглавление

Глава 6. Совместная работа цепи источник — вентиль — нагрузка	. 122
6.1. Особенности работы термоэмиссионного вентиля в цепи	
с учетом его индуктивности и емкости	. 122
6.2. Аналитический способ расчета силы тока цепи источник —	
вентиль — нагрузка	.127
6.3. Резонансные свойства и отклик цепи источник — вентиль —	
нагрузка на единичное входное воздействие	. 129
6.4. Влияние формы сигнала напряжения источника на ток в цепи	
источник — вентиль — нагрузка	. 137
6.5. Исследование устойчивости работы цепи и качества	. 10 /
переходных процессов	138
Контрольные вопросы	
Литература	
	. 1 15
Глава 7. Экспериментальное исследование основных характеристик	1.45
высоковольтных высокотемпературных вентилей	
7.1. Экспериментальная модель высоковольтного вентиля	. 147
7.2. Экспериментальная вольт-амперная характеристика	
высоковольтного термоэмиссионного диода	. 149
7.3. Экспериментальные результаты исследования напряжения	
зажигания обратного дугового разряда	. 155
7.4. Экспериментальные результаты исследования высоковольтного	
плазменного термоэмиссионного диода с бариевым	
наполнением	. 161
Контрольные вопросы	
Литература	
	- 0 1

Ä